Hysteresis of ligand binding in CNGA2 ion channels

نویسندگان

  • Vasilica Nache
  • Thomas Eick
  • Eckhard Schulz
  • Ralf Schmauder
  • Klaus Benndorf
چکیده

Tetrameric cyclic nucleotide-gated (CNG) channels mediate receptor potentials in olfaction and vision. The channels are activated by the binding of cyclic nucleotides to a binding domain embedded in the C terminus of each subunit. Here using a fluorescent cGMP derivative (fcGMP), we show for homotetrameric CNGA2 channels that ligand unbinding is ~50 times faster at saturating than at subsaturating fcGMP. Analysis with complex Markovian models reveals two pathways for ligand unbinding; the partially liganded open channel unbinds its ligands from closed states only, whereas the fully liganded channel reaches a different open state from which it unbinds all four ligands rapidly. Consequently, the transition pathways for ligand binding and activation of a fully liganded CNGA2 channel differ from that of ligand unbinding and deactivation, resulting in pronounced hysteresis of the gating mechanism. This concentration-dependent gating mechanism allows the channels to respond to changes in the cyclic nucleotide concentration with different kinetics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deciphering the function of the CNGB1b subunit in olfactory CNG channels

Olfactory cyclic nucleotide-gated (CNG) ion channels are key players in the signal transduction cascade of olfactory sensory neurons. The second messengers cAMP and cGMP directly activate these channels, generating a depolarizing receptor potential. Olfactory CNG channels are composed of two CNGA2 subunits and two modulatory subunits, CNGA4, and CNGB1b. So far the exact role of the modulatory s...

متن کامل

Pseudechetoxin Binds to the Pore Turret of Cyclic Nucleotide–gated Ion Channels

Peptide toxins are invaluable tools for studying the structure and physiology of ion channels. Pseudechetoxin (PsTx) is the first known peptide toxin that targets cyclic nucleotide-gated (CNG) ion channels, which play a critical role in sensory transduction in the visual and olfactory systems. PsTx inhibited channel currents at low nM concentrations when applied to the extracellular face of mem...

متن کامل

Quantifying the cooperative subunit action in a multimeric membrane receptor.

In multimeric membrane receptors the cooperative action of the subunits prevents exact knowledge about the operation and the interaction of the individual subunits. We propose a method that permits quantification of ligand binding to and activation effects of the individual binding sites in a multimeric membrane receptor. The power of this method is demonstrated by gaining detailed insight into...

متن کامل

Stoichiometry and Assembly of Olfactory Cyclic Nucleotide-Gated Channels

Native ion channels are precisely tuned to their physiological role in neuronal signaling. This tuning frequently involves the controlled assembly of heteromeric channels comprising multiple types of subunits. Cyclic nucleotide-gated (CNG) channels of olfactory neurons are tetramers and require three types of subunits, CNGA2, CNGA4, and CNGB1b, to exhibit properties necessary for olfactory tran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 4  شماره 

صفحات  -

تاریخ انتشار 2013